
Toward Universal Analysis and Visualization of HPC
Application Input/Output Behavior

Huong Luu, Amirhossein Aleyasen, Marianne Winslett, Yasha Mostofi, Kaidong Peng
University of Illinois at Urbana-Champaign

{luu1, aleyase2, winslett, mostofi2, kpeng7}@illinois.edu

ABSTRACT

Analyzing the I/O performance of high-performance computing

applications can provide valuable insights for application

developers, users, and platform administrators. However, the

analysis is difficult and requires parallel I/O expertise few users

possess. Analyzing an entire platform’s I/O workload is even

harder, as it requires large-scale collection, cleaning and

exploration of data. To address this problem, we created a web-

based dashboard for interactive analysis and visualization of

application I/O behavior, based on data collected by a lightweight

I/O profiler that can observe all jobs on a platform at low cost.

The dashboard’s target audience includes application users and

developers who are starting to analyze their application’s I/O

performance; system administrators who want to look into the

usage of their storage system and find potential candidate

applications for improvement; and parallel I/O experts who want

to understand the behavior of an application or set of applications.

The dashboard leverages relational database technology, a

portable graphing library, and lightweight I/O profiling to provide

I/O behavior insights previously only available with great effort.

1. INTRODUCTION
I/O is an important factor in determining the overall performance

of many high-performance computing (HPC) applications.

Analyzing the I/O performance of these applications can provide

valuable insights for application developers, users, and platform

administrators.

For example, an analysis of the runtime behavior of an individual

job is often sufficient to pinpoint its I/O bottlenecks. However,

most scientific codes run not just once, but hundreds or thousands

of times. Additional insights can be gleaned by analyzing not just

an individual run, but the set of all runs of an application over

time; we call this self-benchmarking. The broader view obtained

through self-benchmarking can show an application’s developers

and users how changes in scale, such as the number of processes,

amount of data read and written, and number and types of files,

affect the application’s I/O throughput and run time. The effects

of other changes to the application, such as experiments with

different I/O paradigms or tuning parameters (e.g., stripe size),

can also be clearly seen through self-benchmarking. At an even

broader scale, if all applications on a particular supercomputer

instance are self-benchmarking, then we can examine the patterns

in I/O behavior across that entire platform. The resulting analysis

may suggest ways for the platform’s administrators to free up I/O

resources, e.g., by suggesting potential improvements to the

applications that use the most I/O time on the platform.

However, analyzing HPC application I/O behavior is a difficult

task that requires parallel I/O expertise, a relatively rare

commodity. It is even harder to analyze the I/O behavior of a

platform’s entire workload – a massive amount of data must be

collected, tidied up, explored, and visualized. For this reason,

usually only the I/O behavior of a relatively small set of

“important” applications on a platform receives careful scrutiny.

A rising tide lifts all boats, and it is perhaps reasonable to assume

that improvements in the performance of “important” applications

are likely to be relevant and transferable to other applications as

well. But we can do better today: low-cost technology is available

to make applications and HPC platforms self-benchmarking.

Figure 1 shows the workflow we use for a self-benchmarking

application or platform. As shown in the figure, the first step is to

use an I/O profiler to collect summary information about

applications’ I/O activities. (In this paper, we consider two jobs to

belong to the same application if they have the same executable

name.) Second, we load the data collected by the profiler into a

relational database, so that analysis will be easy in spite of the

many jobs being profiled. Our scripts for parsing and uploading

data into the database are available to all at [12].

Next, dashboard users specify which application(s) are of interest

to them, triggering a standard set of SQL queries that access the

database. The queries compute summaries of the profiles collected

for all the jobs of the specified application. The dashboard

converts the query results into graphs that the user can interact

with and manipulate in various ways. For example, in a graph

that shows the I/O throughput for each run of an application, the

user can choose to sort the application’s runs by data size, number

of processes, submission date and time, or other factors. The user

can choose a particular date range to focus on, or look at the time

spent in particular I/O activities, such as accessing globally-shared

files. Finally, the insights obtained at the dashboard can be used to

tune the application, closing the loop shown in Figure 1.

Figure 1: Self-benchmarking workflow

In theory, any I/O profiler that observes the time spent in

application-level I/O function calls can do the data collection and

summarization needed for self-benchmarking. In practice, for the

platform to be self-benchmarking, the profiler needs to be

deployed by default for all jobs on the platform, so it must add

negligible overhead to each job’s execution time. In this paper, we

use data from the lightweight profiler Darshan [1], which is

enabled in the default environment on supercomputers at Argonne

National Laboratory (ANL), National Energy Research Scientific

Computing Center (NERSC), and the National Center for

Supercomputing Applications (NCSA). I/O experts have used

Darshan data for application-specific, system-wide and cross-

platform analysis [2][3], crafting queries and generating

visualizations by hand. Replicating these activities for additional

applications or platforms is time-consuming and requires I/O

expertise. Our goal in this paper is to show that the analytics and

visualization found in work such as [3] can be performed

automatically by the dashboard, removing the I/O expert from that

loop and doing away with the need for manual analysis for high-

level summary statistics. We anticipate that the dashboard will

also be useful for I/O experts, as it automates many tasks that they

previously may have had to perform by hand.

In the remainder of the paper, we describe related work in Section

2, explain the analytics and visualization provided by the

dashboard in Section 3, and offer conclusions in Section 4.

2. BACKGROUND AND RELATED WORK
Two main types of tools are widely used in I/O performance

diagnosis and optimization: profiling and tracing tools.

I/O tracing provides detailed information about application I/O

executions and allows in-depth analysis of application

performance. After traces have been generated, they can be used

for debugging, performance tuning, or creating benchmarks.

Researchers have created a variety of I/O tracing tools; for

example, RIOT I/O [4], ScalaIOTrace [5], //TRACE [6], IPM [7],

LANL-Trace [8], TraceFS [9], and Recorder [10] fall into this

category. I/O tracing tools are ideal for investigating individual

runs in full detail, but are too heavyweight to be used for every

run of every application on a platform.

I/O profiling omits many of the details recorded in I/O tracing,

thus offering a lighter-weight way to analyze application I/O

behavior. Popular I/O profiling tools include IOPro [11] and

Darshan. IOPro is a profiling and analysis framework that traces

the flow of I/O behavior in the entire parallel I/O software stack,

providing a multi-level view of the interaction between different

layers. IOPro has not yet been used to offer analysis across

multiple runs of an application or platform workload analysis.

The Darshan I/O profiling library characterizes a job by providing

statistics and cumulative timing information, including the

number of processes, number of files accessed, and bytes

read/written; aggregate I/O throughput; and the total run time and

I/O time, among other statistics. In previous work [3], we parsed

Darshan data and loaded it into a relational database, then

performed application-specific, system-wide and cross-platform

analysis. In this project, we continue our work with I/O profiler

data to create an interactive analysis dashboard that automates the

activities we carried out manually in our previous work.

Visualization-assisted data exploration becomes necessary to find

useful information when working with vast amount of data. There

has been much work on visualization to assist performance

analysis for HPC applications, especially for communication, such

as Jumpshot [13], Vampir [14] and TAU [15]. For I/O analysis,

IOVis [16] is an I/O tracing and visualization tool that captures

the I/O requests at multiple layers of the I/O stack and allows end-

to-end analysis. IOVis provides a timeline view of activities of the

entire system, from computation nodes to I/O servers. Sigovan et

al [17] provide a visualization of the activities of an I/O network.

Our dashboard is intended for visualizing application I/O

performance, rather than I/O network performance. Memaxes [18]

is an interactive visual analysis tool for memory accesses.

3. THE DASHBOARD
To ensure portability and scalability, the dashboard’s visualization

facilities run on the client side and are implemented using the

freely available HighCharts library, which is written in JavaScript.

In the implementation described in this paper, we use MySQL

database instances and communicate with them over the web

using SQL queries, PHP, and JSON. The current dashboard

implementation comprises roughly 12K lines of code.

Figure 2 shows the layout of the dashboard screen: a navigation

panel down the left-hand side (area 1), basic options across the top

(area 2), and a chart area (area 3). The navigation panel includes

two types of functionality: the Analyze Platform I/O Workload

section provides platform-wide analyses, which are geared toward

the needs of platform administrators; and the Analyze Application

I/O Behavior section is used for application-specific analyses.

Clicking on a specific entry in the navigation menu highlights that

entry and takes the user to that particular kind of analysis, as

described in the sections that follow.

Figure 2: Layout of the dashboard

Across the top of the screen are options to narrow down the scope

of an analysis. Once the user has entered values for the options

across the top of the screen, those values persist when the user

chooses a new type of analysis in the navigation menu, unless

those options are not relevant for that type of analysis. The

options are the same for most, though not all, of the entries in the

navigation menu, so we discuss them here.

First, filling in the field Application Name narrows down the

scope of the analysis to a particular application, i.e., executable

name. Clicking on that field brings up a list of the applications

with jobs in the database and visible to the user; an administrator

can see all applications, while an ordinary user can only see

applications run by members of his or her project. The current

implementation is specifically for users with administrative

privileges that allow them to examine all applications.

Second, the user may fill in the User field, to narrow the scope of

the analysis to the jobs run by a particular user. Both the User

and Application Name fields may be filled in if desired; this is

particularly useful for widely used applications that offer several

different I/O paradigms and may be used in many different ways.

Third, the user may fill in a date range to indicate the jobs of

interest. The default is to show jobs submitted within the past

year; other options include the past month, week, day, or any

custom range of days within the scope of the data in the database.

Fourth, the Update button should be clicked when the user has

changed other options along the top row, to generate the graphs

and tables corresponding to the newly chosen values for those

options.

Fifth, once the user has clicked the Update button to produce a

graph, the Sort button provides many different ways to order the

https://www.nersc.gov/
https://www.nersc.gov/
http://www.ncsa.illinois.edu/
http://www.ncsa.illinois.edu/

data shown in that graph. For example, the user could choose to

sort the jobs shown along the X axis of a graph by submission

date, I/O throughput, and so forth. This feature is extremely

important for making hidden patterns of behavior visible.

Finally, a little lower down on the right-hand side is a printer icon.

Clicking that icon brings up several options for printing out the

current analysis results.

In the remainder of this section, we first present the dashboard’s

functionality for analyzing the I/O behavior of a single

application, then its facilities for examining the I/O behavior

across an entire platform. All screenshots in this paper are taken

from the dashboard implementation as of October 2015, using real

data from a major supercomputer installation. We have obfuscated

the names of the applications to preserve the privacy of their

developers and users.

3.1 Analyze an Application’s I/O Behavior
The dashboard provides two ways to analyze an application’s I/O

behavior, via a scatter plot to provide an overview of the

application’s I/O characteristics, or via a stacked bar graph that

supports a more detailed analysis of how the application spends its

time. These two functions, Overview of App’s I/O Characteristics

and Time Breakdown, are located at the bottom of the left-hand

side navigation pane of the dashboard, as shown in Figure 2. If

the user has not already filled in the Application Name or User

fields, s/he must do so after clicking on Overview of App’s I/O

Characteristics or Time Breakdown. After filling in any other

desired options such as a date range, the user clicks Update to

perform the analysis and generate the corresponding graphs.

As shown in Figure 3, Overview of App’s I/O Characteristics

gives a high-level view of an application’s I/O needs and job

configurations. (In this and subsequent figures, so that the graphs

can be seen more easily, we have clipped off the screenshot’s

navigation pane and the options buttons, which remain the same

across almost all analyses.) The user chooses which aspects of I/O

behavior to show in each scatter plot, by choosing between the

options given at the bottom of the screen: submission date, bytes

read/written, number of processes, I/O throughput, or user ID.

These options determine the features of the scatter plot, including

what to show on the X and Y axes, and what scale to use for each

axis (linear or log10). The real application shown in the figure

uses the same number of processes and reads and writes the same

amount of data in all of its many runs (a). Figure 3(b) shows that

despite that consistency, its I/O throughput in different jobs varies

from 15 GB/s to 0! This suggests a need for further analysis.

(a) (b)

Figure 3: Two example Overview of App’s Characteristics

graphs, showing (a) number of processes vs. bytes, and

(b) number of processes vs. I/O throughput

Time Breakdown is the most important analysis for identifying

how an application is spending its time. As shown in Figure 4, we

break down the total runtime into Not I/O plus four different kinds

of I/O time; the former includes computation and communication

time. I/O time is divided into the four categories we found most

helpful in the manual analyses in our previous work [3]:

 Global Metadata. All metadata functions for global files (i.e.,

files accessed by all processes), such as file open, close, stat,

and seek functions.

 Non-global Metadata. Metadata functions for files that are not

global (i.e., files accessed by a proper subset of the job’s

processes). These files may be local, that is, accessed by a

single process or part-shared files, which are accessed by

multiple (but not all) processes, for example under a subsetting

I/O paradigm.

 Global Data I/O. Data transfer functions for global files. These

include the read, write, and sync functions.

 Non-global Data I/O. Data transfer for non-global files.

We expect that this way of breaking down the I/O time will be

easy to understand even for users without I/O expertise, because it

aligns with the major decisions they had to make on data

management, such as whether they are willing to cope with

thousands of result files or prefer to just have a few.

Figure 4: Example Time Breakdown graph

In the legend below the graph, the user can choose which of these

four types of I/O time to show in the graph, as well as the Non-I/O

Time, by clicking on them in the legend. In Figure 4, the grayed-

out parts of the legend are what the user has chosen to omit from

the graph. Clicking the % button toggles between using absolute

time units on the Y axis on the left-hand side of a graph, or

showing a percentage breakdown of time. The user can also

choose different job sort orders on the X axis to more easily see

relationships between factors that may influence I/O throughput.

The user has the option of superimposing overlay variables on the

graph, including the number of processes, amount of data

read/written, I/O throughput, number of local files, part-shared

files and global files. These overlay variables use the right-hand Y

axis, and they can be used to determine the sort order for jobs on

the X axis, whether or not the user has omitted them from the

graph. As shown in Figure 5, the user can sort the jobs on multiple

characteristics at the same time, which we have found particularly

useful in our previous manual analyses.

Adding overlay variables to a Time Breakdown graph helps users

to literally see correlations, and to narrow down the number of

factors they need to consider more closely. So does the sort order.

For example, in Figure 4, the user has asked to see the jobs sorted

in decreasing order of an overlay variable, the I/O throughput. As

shown, when global-file data I/O time (light green bars) becomes

large, I/O throughput dives. This suggests the user should take a

closer look at how the application accesses globally shared files.

Figure 5: Multiple levels of sorting options

3.2 Analyze a Platform’s I/O Workload
The dashboard currently supports several types of analysis of

platform I/O workload, to help administrators understand the

usage of their storage systems and identify potential candidates

for further tuning. Due to space limitations, we cannot describe all

the platform-wide analyses currently supported by the dashboard,

so we focus on those we expect to be most useful.

One big concern for administrators is whether applications can

fully utilize the platform’s high performance I/O system, and what

fraction of the peak throughput applications actually achieve. This

analysis is performed by I/O Throughput of All Apps on the

navigation menu. Figure 6 shows an example result, giving the

maximum and median throughput of all runs of all applications on

the platform during the user-specified time period. The user has

sorted the applications in decreasing order of their maximum

throughput. As depicted, among about 400 applications, nearly

half of them never exceeded 1 GB/s of I/O throughput in any run,

though some exceeded 100 GB/s. Even for applications with at

least one job that attained high throughput, their median job

throughput can be several orders of magnitude lower.

Figure 6: Max vs. median I/O throughput of all applications

Platform administrators may save many system resources by

focusing on improving the performance of the applications that

consume the most resources. There are several ways to define

these top applications, such as those that consume the most I/O

system resources (highest I/O time), long running applications

(highest runtime), or the applications that read/write the most

data. For each of these definitions, the user can get an overview of

top applications by clicking the corresponding Top App navigation

menu entry and specifying how many applications to show

(default is 10). As shown in Figure 7, a Top App analysis presents

the user with a table containing aggregated high-level information

about each top application. This includes the application name,

total execution time of all its jobs, total I/O time of all its jobs, its

total number of jobs, the percentage of time spent in I/O on

average across all its jobs, and the median I/O throughput of its

jobs. Below the table, the dashboard presents one scatter plot for

each application in the table, as depicted in Figure 8. Each scatter

plot is similar to that in the Overview of App’s I/O Characteristics

function. The dashboard’s grid of scatter plots facilitates the

comparison and contrast of the I/O characteristics of all the top

applications.

Figure 7: Example Top Apps table

Figure 8: Example grid of scatter plots for Top Apps

4. CONCLUSIONS AND FUTURE WORK
Self-benchmarking was inspired by the fact that HPC applications

already run so many times that they can serve as their own I/O

benchmarks, if we can automatically profile all their runs and

automate the analysis of the resulting data. We leveraged existing

relational database technology, lightweight I/O profilers, and

freely available, portable visualization libraries to accomplish this

goal. Our choice of what to visualize was guided by our previous

experience in manually analyzing and visualizing the I/O

performance of applications observed by profilers: we automated

the functionality we had found most useful in understanding I/O

behavior at supercomputing installations in our previous work.

Currently, we are serving as our own alpha users as we work with

the developers and users of key applications on the Blue Waters

platform. Our next set of users will be the administrators of other

platforms where Darshan runs. We will release the dashboard to

all users only after we address the security issues inherent in

allowing external access to a database residing at a

supercomputing site. For example, the dashboard must defend

against SQL injection attacks and must support strong

authentication of users. Our scripts to parse I/O profiles generated

by Darshan and upload them into a relational database have

already been released [12].

I/O profilers are ideal for showing the big picture, i.e., providing

situational awareness. For example, the dashboard can help users

quickly locate a bottleneck in their I/O approach and see how their

application’s I/O patterns evolve over time. Similarly, the

dashboard can show administrators the I/O throughput that

thousands of applications have obtained on their platform.

Because they omit many details, I/O profilers are inexpensive

enough to be broadly deployed without significant impact on

applications’ run-time performance. But because they omit many

details, I/O profilers never tell the entire story. They may point a

finger at an application and its I/O bottleneck, e.g., by showing

that almost all its I/O time is going to metadata function calls in a

handful of globally shared POSIX read-only files. But to learn

exactly why those calls are so slow, an I/O expert may need to run

the application several times with an I/O tracing tool and examine

those more detailed trace results. For example, the I/O profiler

that we used does not know how the user/application/platform has

tuned the underlying storage system, and these tuning decisions

can have a major impact on performance. In sum, the dashboard

can provide useful insights into I/O behavior, but the insights do

not always go deep enough to understand why an application is

having performance problems. To understand the complete

picture, the HPC community needs both I/O profilers and tracing

tools.

This work was supported by NSF ACI 15-35177.

5. REFERENCES
[1] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley,

24/7 characterization of petascale I/O workloads. IEEE

CLUSTER, 2009.

[2] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, K.

Antypas, Production I/O characterization on the Cray XE6,

Cray User Group Meeting, 2013.

[3] Huong Luu, Marianne Winslett, William Gropp, Robert

Ross, Philip Carns, Kevin Harms, Prabhat, Suren Byna and

Yushu Yao. A Multiplatform Study of I/O Behavior on

Petascale Supercomputers. In Proceedings of The 24th

International ACM Symposium on High-Performance

Parallel and Distributed Computing (HPDC), 2015.

[4] S. A. Wright, S. D. Hammond, S. J. Pennycook, R. F. Bird, J.

A. Herdman, I Miller, A. Vadgama, A. H. Bhalerao, S. A.

Jarvis, Parallel File System Analysis Through Application

I/O Tracing, http://eprints.dcs.warwick.ac.uk/1582/The

Computer Journal, 56 (2), 2013.

[5] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, Scalable

I/O tracing and analysis, Parallel Data Storage Workshop,

2009.

[6] M. P. Mesnier, M. Wachs, R.R. Sambasivan, J. Lopez, J.

Hendricks, G. R. Ganger, D. O’Hallaron, //TRACE: Parallel

trace replay with approximate causal events, File and Storage

Technologies, 2007.

[7] N. J. Wright, W. Pfeiffer, A. Snavely, Characterizing parallel

scaling of scientific applications using IPM, LCI

International Conference on High-Performance Clustered

Computing, 2009.

[8] LANL-Trace:

http://institutes.lanl.gov/data/software/index.php#lanl-trace

[9] A. Aranya, C. P. Wright, E. Zadok, TraceFS: A file system to

trace them all, File and Storage Technologies, 2004.

[10] H.V.T. Luu, B. Behzad, R. Aydt, M. Winslett, A multi-level

approach for understanding I/O activity in HPC applications,

Workshop on Interfaces and Abstractions for Scientific Data

Storage, 2013.

[11] Seong Jo Kim, Yuanrui Zhang, Seung Woo Son, Mahmut T.

Kandemir, Wei-keng Liao, Rajeev Thakur, Alok N.

Choudhary, IOPro: a parallel I/O profiling and visualization

framework for high-performance storage systems. The

Journal of Supercomputing 71(3): 840-870 (2015)

[12] Darshan-SQL scripts:

https://github.com/huongluu/DarshanSQL

[13] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A.

Chan, E. Lusk, and W. Gropp, “From trace generation to

visualization: A performance framework for distributed

parallel systems,” in Proc. of ACM/IEEE Supercomputing

(SC00), November 2000.

[14] A. Knupfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,

H. Mickler, M. S. Muller, and W. E. Nagel, “The Vampir

performance analysis tool- set,” in Tools for High

Performance Computing, M. Resch, R. Keller, V. Himmler,

B. Krammer, and A. Schulz, Eds. Springer, Berlin, pp. 139–

155.

[15] S. S. Shende and A. D. Malony, “The TAU parallel

performance system,” Int. J. High Perform. Comput. Appl.,

vol. 20, no. 2, pp. 287–311, 2006.

[16] C. Muelder, C. Sigovan, K.-L. Ma, J. Cope, S. Lang, K.

Iskra, P. Beck- man, and R. Ross, “Visual analysis of I/O

system behavior for high- end computing,” in Proceedings of

the 3rd International Workshop on Large-Scale System and

Application Performance (LSAP ’11), 2011, pp. 19–26.

[17] Sigovan, Carmen, Chris Muelder, Kwan-Liu Ma, Jason

Cope, Kamil Iskra, and Robert Ross. "A visual network

analysis method for large-scale parallel i/o systems." In

Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pp. 308-319. IEEE, 2013.

[18] Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav

Bhatele, Ilir Jusufi, Peer-Timo Bremer, and Bernd Hamann.

2014. Dissecting on-node memory access performance: a

semantic approach. In Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis (SC '14). IEEE Press, Piscataway, NJ,

USA, 166-176.

http://eprints.dcs.warwick.ac.uk/1582/
http://eprints.dcs.warwick.ac.uk/1582/
http://eprints.dcs.warwick.ac.uk/1582/
http://dblp.uni-trier.de/pers/hd/k/Kim:Seong_Jo
http://dblp.uni-trier.de/pers/hd/z/Zhang:Yuanrui
http://dblp.uni-trier.de/pers/hd/s/Son:Seung_Woo
http://dblp.uni-trier.de/pers/hd/k/Kandemir:Mahmut_T=
http://dblp.uni-trier.de/pers/hd/k/Kandemir:Mahmut_T=
http://dblp.uni-trier.de/pers/hd/l/Liao:Wei=keng
http://dblp.uni-trier.de/pers/hd/t/Thakur:Rajeev
http://dblp.uni-trier.de/db/journals/tjs/tjs71.html#KimZSKLTC15
http://dblp.uni-trier.de/db/journals/tjs/tjs71.html#KimZSKLTC15
https://github.com/huongluu/DarshanSQL

