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ABSTRACT 

Analyzing the I/O performance of high-performance computing 

applications can provide valuable insights for application 

developers, users, and platform administrators. However, the 

analysis is difficult and requires parallel I/O expertise few users 

possess. Analyzing an entire platform’s I/O workload is even 

harder, as it requires large-scale collection, cleaning and 

exploration of data. To address this problem, we created a web-

based dashboard for interactive analysis and visualization of 

application I/O behavior, based on data collected by a lightweight 

I/O profiler that can observe all jobs on a platform at low cost. 

The dashboard’s target audience includes application users and 

developers who are starting to analyze their application’s I/O 

performance; system administrators who want to look into the 

usage of their storage system and find potential candidate 

applications for improvement; and parallel I/O experts who want 

to understand the behavior of an application or set of applications. 

The dashboard leverages relational database technology, a 

portable graphing library, and lightweight I/O profiling to provide 

I/O behavior insights previously only available with great effort. 

1. INTRODUCTION 
I/O is an important factor in determining the overall performance 

of many high-performance computing (HPC) applications. 

Analyzing the I/O performance of these applications can provide 

valuable insights for application developers, users, and platform 

administrators.  

For example, an analysis of the runtime behavior of an individual 

job is often sufficient to pinpoint its I/O bottlenecks. However, 

most scientific codes run not just once, but hundreds or thousands 

of times. Additional insights can be gleaned by analyzing not just 

an individual run, but the set of all runs of an application over 

time; we call this self-benchmarking. The broader view obtained 

through self-benchmarking can show an application’s developers 

and users how changes in scale, such as the number of processes, 

amount of data read and written, and number and types of files, 

affect the application’s I/O throughput and run time.  The effects 

of other changes to the application, such as experiments with 

different I/O paradigms or tuning parameters (e.g., stripe size), 

can also be clearly seen through self-benchmarking. At an even 

broader scale, if all applications on a particular supercomputer 

instance are self-benchmarking, then we can examine the patterns 

in I/O behavior across that entire platform. The resulting analysis 

may suggest ways for the platform’s administrators to free up I/O 

resources, e.g., by suggesting potential improvements to the 

applications that use the most I/O time on the platform. 

However, analyzing HPC application I/O behavior is a difficult 

task that requires parallel I/O expertise, a relatively rare 

commodity. It is even harder to analyze the I/O behavior of a 

platform’s entire workload – a massive amount of data must be 

collected, tidied up, explored, and visualized. For this reason, 

usually only the I/O behavior of a relatively small set of 

“important” applications on a platform receives careful scrutiny. 

A rising tide lifts all boats, and it is perhaps reasonable to assume 

that improvements in the performance of “important” applications 

are likely to be relevant and transferable to other applications as 

well. But we can do better today: low-cost technology is available 

to make applications and HPC platforms self-benchmarking. 

Figure 1 shows the workflow we use for a self-benchmarking 

application or platform. As shown in the figure, the first step is to 

use an I/O profiler to collect summary information about 

applications’ I/O activities. (In this paper, we consider two jobs to 

belong to the same application if they have the same executable 

name.) Second, we load the data collected by the profiler into a 

relational database, so that analysis will be easy in spite of the 

many jobs being profiled. Our scripts for parsing and uploading 

data into the database are available to all at [12]. 

Next, dashboard users specify which application(s) are of interest 

to them, triggering a standard set of SQL queries that access the 

database. The queries compute summaries of the profiles collected 

for all the jobs of the specified application. The dashboard 

converts the query results into graphs that the user can interact 

with and manipulate in various ways.  For example, in a graph 

that shows the I/O throughput for each run of an application, the 

user can choose to sort the application’s runs by data size, number 

of processes, submission date and time, or other factors. The user 

can choose a particular date range to focus on, or look at the time 

spent in particular I/O activities, such as accessing globally-shared 

files. Finally, the insights obtained at the dashboard can be used to 

tune the application, closing the loop shown in Figure 1. 

 

Figure 1: Self-benchmarking workflow 

In theory, any I/O profiler that observes the time spent in 

application-level I/O function calls can do the data collection and 

summarization needed for self-benchmarking. In practice, for the 

platform to be self-benchmarking, the profiler needs to be 

deployed by default for all jobs on the platform, so it must add 

negligible overhead to each job’s execution time. In this paper, we 

use data from the lightweight profiler Darshan [1], which is 

enabled in the default environment on supercomputers at Argonne 



National Laboratory (ANL), National Energy Research Scientific 

Computing Center (NERSC), and the National Center for 

Supercomputing Applications (NCSA). I/O experts have used 

Darshan data for application-specific, system-wide and cross-

platform analysis [2][3], crafting queries and generating 

visualizations by hand. Replicating these activities for additional 

applications or platforms is time-consuming and requires I/O 

expertise.  Our goal in this paper is to show that the analytics and 

visualization found in work such as [3] can be performed 

automatically by the dashboard, removing the I/O expert from that 

loop and doing away with the need for manual analysis for high-

level summary statistics.  We anticipate that the dashboard will 

also be useful for I/O experts, as it automates many tasks that they 

previously may have had to perform by hand. 

In the remainder of the paper, we describe related work in Section 

2, explain the analytics and visualization provided by the 

dashboard in Section 3, and offer conclusions in Section 4. 

2. BACKGROUND AND RELATED WORK 
Two main types of tools are widely used in I/O performance 

diagnosis and optimization: profiling and tracing tools.  

I/O tracing provides detailed information about application I/O 

executions and allows in-depth analysis of application 

performance. After traces have been generated, they can be used 

for debugging, performance tuning, or creating benchmarks. 

Researchers have created a variety of I/O tracing tools; for 

example, RIOT I/O [4], ScalaIOTrace [5], //TRACE [6], IPM [7], 

LANL-Trace [8], TraceFS [9], and Recorder [10] fall into this 

category. I/O tracing tools are ideal for investigating individual 

runs in full detail, but are too heavyweight to be used for every 

run of every application on a platform. 

I/O profiling omits many of the details recorded in I/O tracing, 

thus offering a lighter-weight way to analyze application I/O 

behavior. Popular I/O profiling tools include IOPro [11] and 

Darshan. IOPro is a profiling and analysis framework that traces 

the flow of I/O behavior in the entire parallel I/O software stack, 

providing a multi-level view of the interaction between different 

layers. IOPro has not yet been used to offer analysis across 

multiple runs of an application or platform workload analysis. 

The Darshan I/O profiling library characterizes a job by providing 

statistics and cumulative timing information, including the 

number of processes, number of files accessed, and bytes 

read/written; aggregate I/O throughput; and the total run time and 

I/O time, among other statistics. In previous work [3], we parsed 

Darshan data and loaded it into a relational database, then 

performed application-specific, system-wide and cross-platform 

analysis. In this project, we continue our work with I/O profiler 

data to create an interactive analysis dashboard that automates the 

activities we carried out manually in our previous work.  

Visualization-assisted data exploration becomes necessary to find 

useful information when working with vast amount of data. There 

has been much work on visualization to assist performance 

analysis for HPC applications, especially for communication, such 

as Jumpshot [13], Vampir [14] and TAU [15]. For I/O analysis, 

IOVis [16] is an I/O tracing and visualization tool that captures 

the I/O requests at multiple layers of the I/O stack and allows end-

to-end analysis. IOVis provides a timeline view of activities of the 

entire system, from computation nodes to I/O servers. Sigovan et 

al [17] provide a visualization of the activities of an I/O network. 

Our dashboard is intended for visualizing application I/O 

performance, rather than I/O network performance. Memaxes [18] 

is an interactive visual analysis tool for memory accesses. 

3. THE DASHBOARD 
To ensure portability and scalability, the dashboard’s visualization 

facilities run on the client side and are implemented using the 

freely available HighCharts library, which is written in JavaScript. 

In the implementation described in this paper, we use MySQL 

database instances and communicate with them over the web 

using SQL queries, PHP, and JSON. The current dashboard 

implementation comprises roughly 12K lines of code. 

Figure 2 shows the layout of the dashboard screen: a navigation 

panel down the left-hand side (area 1), basic options across the top 

(area 2), and a chart area (area 3). The navigation panel includes 

two types of functionality: the Analyze Platform I/O Workload 

section provides platform-wide analyses, which are geared toward 

the needs of platform administrators; and the Analyze Application 

I/O Behavior section is used for application-specific analyses. 

Clicking on a specific entry in the navigation menu highlights that 

entry and takes the user to that particular kind of analysis, as 

described in the sections that follow. 

 

 

Figure 2: Layout of the dashboard 

Across the top of the screen are options to narrow down the scope 

of an analysis. Once the user has entered values for the options 

across the top of the screen, those values persist when the user 

chooses a new type of analysis in the navigation menu, unless 

those options are not relevant for that type of analysis. The 

options are the same for most, though not all, of the entries in the 

navigation menu, so we discuss them here. 

First, filling in the field Application Name narrows down the 

scope of the analysis to a particular application, i.e., executable 

name.  Clicking on that field brings up a list of the applications 

with jobs in the database and visible to the user; an administrator 

can see all applications, while an ordinary user can only see 

applications run by members of his or her project. The current 

implementation is specifically for users with administrative 

privileges that allow them to examine all applications.  

Second, the user may fill in the User field, to narrow the scope of 

the analysis to the jobs run by a particular user.  Both the User 

and Application Name fields may be filled in if desired; this is 

particularly useful for widely used applications that offer several 

different I/O paradigms and may be used in many different ways. 

Third, the user may fill in a date range to indicate the jobs of 

interest.  The default is to show jobs submitted within the past 

year; other options include the past month, week, day, or any 

custom range of days within the scope of the data in the database. 

Fourth, the Update button should be clicked when the user has 

changed other options along the top row, to generate the graphs 

and tables corresponding to the newly chosen values for those 

options. 

Fifth, once the user has clicked the Update button to produce a 

graph, the Sort button provides many different ways to order the 
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data shown in that graph.  For example, the user could choose to 

sort the jobs shown along the X axis of a graph by submission 

date, I/O throughput, and so forth. This feature is extremely 

important for making hidden patterns of behavior visible. 

Finally, a little lower down on the right-hand side is a printer icon.  

Clicking that icon brings up several options for printing out the 

current analysis results. 

In the remainder of this section, we first present the dashboard’s 

functionality for analyzing the I/O behavior of a single 

application, then its facilities for examining the I/O behavior 

across an entire platform. All screenshots in this paper are taken 

from the dashboard implementation as of October 2015, using real 

data from a major supercomputer installation. We have obfuscated 

the names of the applications to preserve the privacy of their 

developers and users. 

3.1 Analyze an Application’s I/O Behavior 
The dashboard provides two ways to analyze an application’s I/O 

behavior, via a scatter plot to provide an overview of the 

application’s I/O characteristics, or via a stacked bar graph that 

supports a more detailed analysis of how the application spends its 

time.  These two functions, Overview of App’s I/O Characteristics 

and Time Breakdown, are located at the bottom of the left-hand 

side navigation pane of the dashboard, as shown in Figure 2.  If 

the user has not already filled in the Application Name or User 

fields, s/he must do so after clicking on Overview of App’s I/O 

Characteristics or Time Breakdown. After filling in any other 

desired options such as a date range, the user clicks Update to 

perform the analysis and generate the corresponding graphs. 

As shown in Figure 3, Overview of App’s I/O Characteristics 

gives a high-level view of an application’s I/O needs and job 

configurations. (In this and subsequent figures, so that the graphs 

can be seen more easily, we have clipped off the screenshot’s 

navigation pane and the options buttons, which remain the same 

across almost all analyses.) The user chooses which aspects of I/O 

behavior to show in each scatter plot, by choosing between the 

options given at the bottom of the screen: submission date, bytes 

read/written, number of processes, I/O throughput, or user ID. 

These options determine the features of the scatter plot, including 

what to show on the X and Y axes, and what scale to use for each 

axis (linear or log10). The real application shown in the figure 

uses the same number of processes and reads and writes the same 

amount of data in all of its many runs (a).  Figure 3(b) shows that 

despite that consistency, its I/O throughput in different jobs varies 

from 15 GB/s to 0! This suggests a need for further analysis. 

  

(a) (b) 

Figure 3: Two example Overview of App’s Characteristics 

graphs, showing (a) number of processes vs. bytes, and          

(b) number of processes vs. I/O throughput 

Time Breakdown is the most important analysis for identifying 

how an application is spending its time. As shown in Figure 4, we 

break down the total runtime into Not I/O plus four different kinds 

of I/O time; the former includes computation and communication 

time. I/O time is divided into the four categories we found most 

helpful in the manual analyses in our previous work [3]: 

 Global Metadata. All metadata functions for global files (i.e., 

files accessed by all processes), such as file open, close, stat, 

and seek functions. 

 Non-global Metadata. Metadata functions for files that are not 

global (i.e., files accessed by a proper subset of the job’s 

processes). These files may be local, that is, accessed by a 

single process or part-shared files, which are accessed by 

multiple (but not all) processes, for example under a subsetting 

I/O paradigm. 

 Global Data I/O. Data transfer functions for global files. These 

include the read, write, and sync functions. 

 Non-global Data I/O. Data transfer for non-global files. 

We expect that this way of breaking down the I/O time will be 

easy to understand even for users without I/O expertise, because it 

aligns with the major decisions they had to make on data 

management, such as whether they are willing to cope with 

thousands of result files or prefer to just have a few.  

 

Figure 4: Example Time Breakdown graph 

In the legend below the graph, the user can choose which of these 

four types of I/O time to show in the graph, as well as the Non-I/O 

Time, by clicking on them in the legend. In Figure 4, the grayed-

out parts of the legend are what the user has chosen to omit from 

the graph. Clicking the % button toggles between using absolute 

time units on the Y axis on the left-hand side of a graph, or 

showing a percentage breakdown of time. The user can also 

choose different job sort orders on the X axis to more easily see 

relationships between factors that may influence I/O throughput. 

The user has the option of superimposing overlay variables on the 

graph, including the number of processes, amount of data 

read/written, I/O throughput, number of local files, part-shared 

files and global files. These overlay variables use the right-hand Y 

axis, and they can be used to determine the sort order for jobs on 

the X axis, whether or not the user has omitted them from the 

graph. As shown in Figure 5, the user can sort the jobs on multiple 

characteristics at the same time, which we have found particularly 

useful in our previous manual analyses. 

Adding overlay variables to a Time Breakdown graph helps users 

to literally see correlations, and to narrow down the number of 

factors they need to consider more closely.  So does the sort order. 

For example, in Figure 4, the user has asked to see the jobs sorted 

in decreasing order of an overlay variable, the I/O throughput. As 



shown, when global-file data I/O time (light green bars) becomes 

large, I/O throughput dives. This suggests the user should take a 

closer look at how the application accesses globally shared files.  

 

Figure 5: Multiple levels of sorting options 

3.2 Analyze a Platform’s I/O Workload 
The dashboard currently supports several types of analysis of 

platform I/O workload, to help administrators understand the 

usage of their storage systems and identify potential candidates 

for further tuning. Due to space limitations, we cannot describe all 

the platform-wide analyses currently supported by the dashboard, 

so we focus on those we expect to be most useful.  

One big concern for administrators is whether applications can 

fully utilize the platform’s high performance I/O system, and what 

fraction of the peak throughput applications actually achieve. This 

analysis is performed by I/O Throughput of All Apps on the 

navigation menu. Figure 6 shows an example result, giving the 

maximum and median throughput of all runs of all applications on 

the platform during the user-specified time period. The user has 

sorted the applications in decreasing order of their maximum 

throughput. As depicted, among about 400 applications, nearly 

half of them never exceeded 1 GB/s of I/O throughput in any run, 

though some exceeded 100 GB/s. Even for applications with at 

least one job that attained high throughput, their median job 

throughput can be several orders of magnitude lower. 

 

Figure 6: Max vs. median I/O throughput of all applications 

Platform administrators may save many system resources by 

focusing on improving the performance of the applications that 

consume the most resources. There are several ways to define 

these top applications, such as those that consume the most I/O 

system resources (highest I/O time), long running applications 

(highest runtime), or the applications that read/write the most 

data. For each of these definitions, the user can get an overview of 

top applications by clicking the corresponding Top App navigation 

menu entry and specifying how many applications to show 

(default is 10). As shown in Figure 7, a Top App analysis presents 

the user with a table containing aggregated high-level information 

about each top application. This includes the application name, 

total execution time of all its jobs, total I/O time of all its jobs, its 

total number of jobs, the percentage of time spent in I/O on 

average across all its jobs, and the median I/O throughput of its 

jobs. Below the table, the dashboard presents one scatter plot for 

each application in the table, as depicted in Figure 8. Each scatter 

plot is similar to that in the Overview of App’s I/O Characteristics 

function. The dashboard’s grid of scatter plots facilitates the 

comparison and contrast of the I/O characteristics of all the top 

applications. 

 

Figure 7: Example Top Apps table 

 

 

Figure 8: Example grid of scatter plots for Top Apps 

4. CONCLUSIONS AND FUTURE WORK 
Self-benchmarking was inspired by the fact that HPC applications 

already run so many times that they can serve as their own I/O 

benchmarks, if we can automatically profile all their runs and 

automate the analysis of the resulting data.  We leveraged existing 

relational database technology, lightweight I/O profilers, and 

freely available, portable visualization libraries to accomplish this 

goal.  Our choice of what to visualize was guided by our previous 

experience in manually analyzing and visualizing the I/O 



performance of applications observed by profilers: we automated 

the functionality we had found most useful in understanding I/O 

behavior at supercomputing installations in our previous work. 

Currently, we are serving as our own alpha users as we work with 

the developers and users of key applications on the Blue Waters 

platform.  Our next set of users will be the administrators of other 

platforms where Darshan runs.  We will release the dashboard to 

all users only after we address the security issues inherent in 

allowing external access to a database residing at a 

supercomputing site.  For example, the dashboard must defend 

against SQL injection attacks and must support strong 

authentication of users.  Our scripts to parse I/O profiles generated 

by Darshan and upload them into a relational database have 

already been released [12]. 

I/O profilers are ideal for showing the big picture, i.e., providing 

situational awareness. For example, the dashboard can help users 

quickly locate a bottleneck in their I/O approach and see how their 

application’s I/O patterns evolve over time. Similarly, the 

dashboard can show administrators the I/O throughput that 

thousands of applications have obtained on their platform. 

Because they omit many details, I/O profilers are inexpensive 

enough to be broadly deployed without significant impact on 

applications’ run-time performance. But because they omit many 

details, I/O profilers never tell the entire story.  They may point a 

finger at an application and its I/O bottleneck, e.g., by showing 

that almost all its I/O time is going to metadata function calls in a 

handful of globally shared POSIX read-only files. But to learn 

exactly why those calls are so slow, an I/O expert may need to run 

the application several times with an I/O tracing tool and examine 

those more detailed trace results. For example, the I/O profiler 

that we used does not know how the user/application/platform has 

tuned the underlying storage system, and these tuning decisions 

can have a major impact on performance. In sum, the dashboard 

can provide useful insights into I/O behavior, but the insights do 

not always go deep enough to understand why an application is 

having performance problems. To understand the complete 

picture, the HPC community needs both I/O profilers and tracing 

tools. 
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